2 Germes escalares

E_s e M_s

Todo esse texto trata de teoria local de funções. Assim, domínios não são importantes: quase todos os resultados são válidos para vizinhanças de pontos. É conveniente substituir funções pelos seus germes. Sejam U e V abertos de \mathbb{R}^s . Seja $x_0 \in W = U \cap V$ e funções $f: U \subseteq \mathbb{R}^s \to \mathbb{R}^t$ e $g: V \subseteq \mathbb{R}^s \to \mathbb{R}^t$ de classe C^{∞} . Façamos $f \sim g$ quando existe um aberto Z contendo x_0 no qual as restrições de f e g coincidem. A classe de equivalência [f] é denominada o germe de f em x_0 , e diz-se que f e g possuem o mesmo germe em x_0 . Outra notação freqüente é $f: (\mathbb{R}^s, x_0) \to (\mathbb{R}^t, y_0)$, representando um germe em $x_0 \in \mathbb{R}^s$, que leva x_0 a $y_0 \in \mathbb{R}^t$.

Germes em um mesmo ponto e funções compartilham várias construções, como soma e multiplicação por escalar. A composição $[f] \circ [g]$ é possível, a partir de $f \circ g : (\mathbb{R}^m, x) \stackrel{g}{\longrightarrow} (\mathbb{R}^s, y) \stackrel{f}{\longrightarrow} (\mathbb{R}^t, z)$, sob as hipóteses naturais da boa definição . Aqui, os domínios e contradomínios explicitam os pontos nos quais as vizinhanças abertas das definições de germe devem ser tomadas: precisamos ter g(x) = y, f(y) = z.

De forma análoga, toda função C^{∞} admite localmente uma expansão formal em série de Taylor, não necessariamente convergente. Assim, podemos associar ao germe a expansão de um representante. Por outro lado, não faz sentido avaliar um germe de função em um ponto $x \neq x_0$ e escrever [f](x) (a menos que $x = x_0$). Não se perde generalidade ao se fazer $x_0 = 0$. Uma translação no domínio nos dá o caso geral para todas as propriedades de interesse.

Denotaremos por E_s o espaço vetorial dos germes $f:(\mathbb{R}^s,0)\to\mathbb{R}$, aonde não exigimos que f(0)=0. É conveniente pensar em E_s como um anel (comutativo, com unidade), esquecendo a multiplicação por escalar. Estaremos interessados em ideais não triviais $\mathcal{I}\subset E_s$, que serão freqüentemente descritos por uma lista de seus geradores, $\mathcal{I}=\langle \mathcal{I}_1,\cdots,\mathcal{I}_i,\cdots\rangle\cdot E_s$ onde $\mathcal{I}_i\in E_s$, $\forall i\geqslant 1$. Todo elemento do ideal é combinação linear finita dos seus geradores, com germes

de E_s usados como coeficientes. O ideal $M_s = \{f \in E_s: f(0) = 0\}$, formado pelos germes de E_s que preservam a origem, é especialmente interessante . Vamos obter um conjunto de geradores para M_s : precisamos de uma ferramenta auxiliar.

Lema 2.1 (Hadamard): Seja $U \in \mathbb{R}^s$ aberto contendo a origem. Seja $f: U \to \mathbb{R}$ uma função suave com f(0) = 0. Então existem funções suaves $\alpha_i: U \to \mathbb{R}$ tais que

$$f(x) = f(x_1, \dots, x_s) = \sum_i \alpha_i(x) x_i.$$

Demonstração: Defina F(u) = f(ux). Pelo Teorema Fundamental do Cálculo, $F(1) = F(0) + \int_0^1 F'(u) du$, ou, em termos de f(x),

$$f(x) = \int_0^1 \frac{d}{du} f(ux) du = \int_0^1 \left(\sum_{i=1}^s \frac{\partial f(ux)}{\partial x_i} x_i \right) du = \sum_{i=1}^s \left(\int_0^1 \frac{\partial f(ux)}{\partial x_i} du \right) x_i. \blacksquare$$

Proposição 2.1: Sejam f e g germes e \mathcal{I} um ideal de E_s .

- (i) $f \in E_s$ é invertível (como elemento do anel E_s) se e somente se $f(0) \neq 0$.
- (ii) M_s é o único ideal maximal de E_s .
- (iii) $M_s = \langle x_1, x_2, \dots, x_s \rangle \cdot E_s$.

Demonstração:

(i) Necessidade: Suponha f invertível. Então existe $g \in E_s$ tal que fg = 1, o que implica em f(0)g(0) = 1 e $f(0) \neq 0$.

Suficiência: Seja $f \in E_s$ tal que $f(0) \neq 0$. Então g = 1/f é o inverso de f.

- (ii) Seja um ideal $\mathcal{I} \subseteq E_s$ tal que $M_s \subset \mathcal{I} \subseteq E_s$. Podemos então encontrar um $f \in \mathcal{I}$ tal que $f(0) \neq 0$. Por (i) vemos que f é invertível como elemento do anel E_s . Então $1 \in \mathcal{I}$ e qualquer ideal que contenha a unidade contém o anel. Daí $\mathcal{I} = E_s$ e M_s é maximal. Para verificar a unicidade, suponha que \mathcal{I} seja também um ideal maximal de E_s e que $\mathcal{I} \neq M_s$. Portanto, existe $f \in \mathcal{I}$ tal que f não pertence à M_s , ou seja, $f(0) \neq 0$. Por (i) vemos que f é invertível e que $1 \in \mathcal{I}$. Já vimos que: $1 \in \mathcal{I} \Rightarrow \mathcal{I} = E_s$.
- (iii) É uma conseqüência direta do lema acima. ■

Quando o contexto deixar claro, omitiremos a indicação do anel ao qual o ideal pertence. Assim, $M_s = \langle x_1, \cdots, x_s \rangle \cdot E_s$ será denotado por $M_s = \langle x_1, \cdots, x_s \rangle$. Podemos associar a um germe a expansão em série (formal) de Taylor de um representante. Os germes de $M_s \subset E_s$ são aqueles para os quais o termo constante da série de Taylor em 0 se anula. O ideal M_s^k é uma descrição

algébrica conveniente dos germes de E_s cujas derivadas parciais se anulam até (e inclusive) ordem (k-1).

A partir de M_s calculamos $M_s^2 = M_s \cdot M_s$ (o produto dos ideais \mathcal{I} e J é formado pelas somas de elementos da forma $z_i z_j, z_i \in \mathcal{I}, z_j \in \mathcal{J}$). Sejam, por exemplo, $x \in y$ as funções coordenadas de \mathbb{R}^2 . Então

(a)
$$M_2^2 = \langle x^2, xy, y^2 \rangle$$
, $h \in M_2^2 \stackrel{\text{def}}{\Leftrightarrow} h = (x^2 f_1 + xy f_2 + y^2 f_3)$, $f_1, f_2, f_3 \in E_2$.

(b)
$$M_2^3 = M_2 \cdot M_2^2 = \langle x, y \rangle \cdot \langle x^2, xy, y^2 \rangle = \langle x^3, x^2y, xy^2, y^3 \rangle$$
.

Proposição 2.2: Seja α multi-índice percorrendo os índices de grau total $k = \sum_{i=1}^{s} \alpha_i$ e o monômio $x = x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_s^{\alpha_s}$ com $\langle x \rangle = \langle x_1, \dots, x_s \rangle$.

(a)
$$M_s^k = \langle x^\alpha \rangle = \langle x \rangle^k$$
.

(b)
$$h \in M_s^k \Leftrightarrow h = \sum_{\alpha} x^{\alpha} f_{\alpha} \text{ com } f_{\alpha}(0) \neq 0.$$

(c) $M_s^k \cdot M_s^l = M_s^{k+l}.$

(c)
$$M_s^k \cdot M_s^l = M_s^{k+l}$$
.

O item (a) mostra que M_s^k é um ideal finitamente gerado de E_s para qualquer $k \in \mathbb{N}$.

Demonstração: Os itens (a) e (b) seguem por indução. Para (c), basta escrever os geradores a partir de (a).

Os geradores de M_2^k para $k=1,2,\ldots$ podem ser arrumados em linhas como no diagrama de Siersma.

Na primeira linha temos o gerador de E_2 , na segunda os geradores $\langle x, y \rangle$ de M_2 , na terceira os de $M_2^2 = \langle x^2, xy, y^2 \rangle$, e assim por diante. Cada linha é construída a partir da anterior multiplicando-a pelos geradores de $M_2 = \langle x, y \rangle$.

Seja $(E_s)^t = E_s \times t$ vezes $\times E_s$ e seja $f \in (E_s)^t$, com coordenadas $f_i \in E_s$, α multi-índice. Seja $j^k f_i$ o germe do polinômio de Taylor de grau k de f_i ,

$$j^k f_i = \sum_{|\alpha| \le k} \frac{D^{\alpha} f_i(0) x^{\alpha}}{\alpha!}.$$

O k-jato $j^k f$ é a t-upla $j^k f = (j^k f_1, \dots, j^k f_t)$ de germes de polinômios de Taylor de f. Assim, 0-jatos são as aproximações de uma função por uma constante, 1-jatos são transformações afins, 2-jatos são polinômios com termos constantes, lineares e quadráticos. Terminamos a seção com um primeiro exemplo muito simples, que será generalizado de várias formas.

Proposição 2.3 (formas locais em E_1): Seja $f : \mathbb{R} \to \mathbb{R}$ suave, satisfazendo f(0) = 0. Suponha que as primeiras derivadas de f em zero sejam todas nulas até ordem k, isto é, $f(0) = f'(0) = \ldots = f^{(k)}(0) = 0 < f^{(k+1)}(0)$. Então existe uma troca de variáveis φ numa vizinhança da origem no domínio (isto é, um difeomorfismo local preservando a origem) tal que $f \circ \varphi = x^k$.

Demonstração: Pelo Lema de Hadamard, $f(x) = x^k g(x)$, onde g(x) é suave, positiva na origem (derivando, é fácil ver que $f^{(k)}(0) = k! g(0)$). Defina $X = \varphi^{-1}(x) = x(g(x))^{1/k}$. Pelo Teorema da Função Inversa, como a derivada de φ^{-1} na origem não é nula, φ é um difeomorfismo local preservando a origem. Finalmente, $f \circ \varphi(X) = X^k$.

Nem os teoremas de função inversa, nem aliás o Lema de Morse (descrito em 2.2 adiante), obteriam essa forma local. Se a função fosse real analítica (ou mesmo analítica), o resultado teria uma demonstração mais imediata: $f(x) = x^k g(x)$ pode ser obtido diretamente da expansão de Taylor de f em 0.

2.2 \mathcal{R} -equivalência em E_s

Agora, descrevemos a primeira de uma série de equivalências entre germes. As equivalências serão definidas em termos de ações de grupos, seguindo a construção descrita no Apêndice. Ao longo do texto, escolheremos grupos G que vão agir sobre conjuntos S de germes. Dado um germe de S, em geral procura-se outro equivalente (isto é, que esteja na mesma órbita da ação de G) que tenha uma representação mais simples.

O passo seguinte também se descreve nessa generalidade. Suponha que o grupo G, o conjunto S e a ação do grupo sobre o conjunto tenham alguma regularidade geométrica. A órbita \mathcal{O}_f por um elemento f, então, pode ser pensada como uma superfície, dotada de um espaço tangente em cada ponto. Considere uma curva suave g(u) no grupo para a qual g(0) = e, a identidade do grupo. A imagem de f pela ação dos elementos de g(u) é uma curva $\gamma(u)$ em \mathcal{O}_f e a derivada de $\gamma(u)$ para u = 0 pertence ao espaço tangente de \mathcal{O}_f em f.

Informalmente, os elementos do espaço tangente são as alterações infinitesimais que induzem germes equivalentes a f pela ação do grupo.

Esse capítulo é dedicado à ação do grupo $\mathcal{R}(\mathbb{R}^s)$, o conjunto de germes de difeomorfismos locais $\varphi: (\mathbb{R}^s, 0) \to (\mathbb{R}^s, 0)$ de classe C^{∞} que preservam a origem. Sempre que o contexto permitir, omitiremos \mathbb{R}^s em $\mathcal{R}(\mathbb{R}^s)$. A composição faz de \mathcal{R} um grupo. A função $A: \mathcal{R} \times E_s \to E_s$ dada por $A(\varphi, f) = f \circ \varphi$ é uma ação de \mathcal{R} em E_s . Seguindo o padrão geral descrito acima, germes $f, g \in E_s$ são \mathcal{R} -equivalentes quando existe $\varphi \in \mathcal{R}$ tal que $f = g \circ \varphi$. É trivial verificar que A é de fato uma ação. A ação mantém o ideal M_s invariante.

Seja $f \in E_s$ e $\varphi(x, u), u \in \mathbb{R}$ uma curva em $\mathcal{R}(\mathbb{R}^s)$ com $\varphi(., 0) = I_s$, a identidade de $\mathcal{R}(\mathbb{R}^s)$. Pela construção geral, o espaço tangente $T_f^{\mathcal{R}}$ à órbita de f é o conjunto dos germes

$$T_f^{\mathcal{R}} = \{ \frac{\partial f \circ \varphi}{\partial u}(x, u)|_{u=0} \} \subset E_s.$$

Vamos descrever de forma mais explícita os vetores tangentes. Seja $f_x(x)$ o vetor gradiente $1 \times s$ e $\varphi_u(x, u)$ o vetor $s \times 1$ de derivadas parciais em u de $\varphi(x, u)$. Pela regra da cadeia,

$$\frac{\partial f \circ \varphi}{\partial u}(x, u)|_{u=0} = f_x(\varphi(x, u))\varphi_u(x, u).$$

É fácil ver que uma curva suave $\varphi(x,u)$ com $\varphi(x,0)=x$ pode ter funções derivadas $\frac{\partial \varphi_j}{\partial u}(x,0)$ arbitrárias: é só tomar $\varphi(x,u)=x+u[\frac{\partial \varphi_j}{\partial u}(x,0)]$, onde a expressão entre colchetes denota um vetor com aquela coordenada. Assim, $T_f^{\mathcal{R}}$ é o ideal de E_s gerado pelas funções $\frac{\partial f}{\partial x_j}(x), j=1,\ldots,s$, o chamado ideal jacobiano J_f do germe f. Dado um germe, é natural procurar por germes equivalentes entre seus jatos em 0. Um germe f de M_s é k-determinado na \mathcal{R} -órbita quando f e seu k-jato $j^k f$ são \mathcal{R} -equivalentes. Um germe f é finitamente determinado se para algum k temos que f é k-determinado. Perto da origem, um germe k-determinado possui o comportamento qualitativo de um polinômio, seu k-jato.

A Proposição 2.3 identifica os germes k-determinados de E_1 . O Teorema da Função Implícita e o Lema de Morse, descritos a seguir, são os exemplos habituais de classificação de germes por k-determinação.

Forma Local das Submersões (FLS): Seja $f \in M_s$. A FLS afirma que, se a jacobiana $f_x(0)$ é sobrejetora, então f é 1-determinado. Além disso, f é \mathcal{R} -equivalente ao germe da projeção $(x_1, \ldots, x_s) \mapsto x_1$. Num vocabulário mais

familiar, na vizinhança de um ponto regular x_0 , isto é, um ponto no qual $f_x(x_0)$ é sobrejetora, $f: \mathbb{R}^s \to \mathbb{R}$ é uma projeção (mais uma constante), depois de troca de variável no domínio preservando x_0 .

Lema de Morse: Seja 0 um ponto crítico não-degenerado de $f \in M_s^2$, isto é $f_x(0) = 0$, com Hessiana Hf(0) invertível. Suponha $f(x) = \frac{1}{2}x^T Hf(0)x + R(x)$, onde R(x) varia quadraticamente com x. Então o germe f é 2-determinado: $f \stackrel{\mathcal{R}}{\sim} \frac{1}{2}x^T Hf(0)x$. Mais, f é também \mathcal{R} -equivalente ao germe $g(x) = x^T Dx$, onde D é uma matriz diagonal tendo como entradas diagonais os números ± 1 .

O resultado principal desse capítulo é o Teorema 2.1, que descreve uma condição suficiente para k-determinação por \mathcal{R} -equivalência. A partir do teorema, seguem a FLS em E_s e o Lema de Morse, no sentido que o teorema comprova a equivalência do germe com seus 1- ou 2-jatos, respectivamente. As versões mais finas são apenas ajustes simples usando argumentos de álgebra linear. Antes de tratar do teorema geral, apresentamos um exemplo, para perceber a dificuldade inerente a um teorema de k-determinação.

Seja $f(x,y)=x^2+y^3$. Então o germe f é 3-determinado em sua \mathcal{R} -órbita. Para ver isso, temos que mostrar que qualquer deformação de f por um perturbação quártica $p\in M_2^4$ permanece na mesma \mathcal{R} -órbita de f. Considere o germe g(x,y)=f(x,y)+p(x,y): temos que mostrar que $f\stackrel{\mathcal{R}}{\sim} (f+p)$, o que equivale a encontrar $\varphi\in\mathcal{R}$ tal que $(f+p)(\varphi(x))=f(x)$. Para simplificar o argumento, vamos supor que tanto f quanto g são germes reais analíticos. Denote a série de Taylor para p(x,y) por

$$p(x,y) = a_1 x^4 + a_2 x^3 y + a_3 x^2 y^2 + a_4 x y^3 + a_5 y^4 + \dots$$

e agrupe os monômios na forma

$$p(x,y) = x^{2}(a_{1}x^{2} + a_{2}xy + a_{3}y^{2}...) + y^{3}(a_{4}x + a_{5}y + ...),$$

o que aliás pode ser feito de várias maneiras diferentes, todas uniformemente convergentes. Substituindo,

$$g(x,y) = (f+p)(x,y) = x^{2}(1 + a_{1}x^{2} + a_{2}xy + a_{3}y^{2}...) + y^{3}(1 + a_{4}x + a_{5}y + ...).$$

Agora, defina

$$X(x,y) = x(1 + a_1x^2 + a_2xy + a_3y^2...)^{\frac{1}{2}},$$

$$Y(x,y) = y(1 + a_4x + a_5y + ...)^{\frac{1}{3}},$$

onde as raízes são escolhidas como sendo germes positivos (estamos operando perto da origem!). Seja $\varphi(x,y)=(X(x,y),Y(x,y))$: vamos ver que $\varphi\in\mathcal{R}(\mathbb{R}^2)$. Certamente, φ é suave e preserva a origem. Observe que a jacobiana $D\varphi(0,0)$ é

a identidade: pelo Teorema da Função Inversa, φ é um elemento de \mathcal{R} . Então, f é 3-determinado, já que $f(\varphi(x,y)) = f(X(x,y),Y(x,y)) = (f+p)(x,y)$.

O mesmo argumento poderia ser usado para considerar perturbações p um pouco mais gerais. Seria possível, por exemplo, acrescentar monômios múltiplos de x^3 ou x^2y , por exemplo. Assim, k-determinação pode ser tomada como um ponto de partida para formas normais ainda mais simples.

Perturbações suaves, mas não mais analíticas, exigem um pouco mais de trabalho: em vez de expandir em Taylor, é necessário aplicar o Lema de Hadamard, essencialmente uma série de Taylor com resto, para validar as definições análogas de X e Y.

Teorema 2.1: Seja $f \in M_s$ com ideal jacobiano $J_f = \langle f_{x_1}, \dots, f_{x_s} \rangle$. Suponha que $M_s^k \subseteq M_s J_f$. Então f é k-determinado em sua \mathcal{R} -órbita.

Demonstração: Sejam f e f+p germes com mesmo k-jato, $p \in M_s^{k+1}$. O segmento de reta entre os dois germes permanece em M_s . Para $u_0 \in [0,1]$ fixo, seja $\tilde{f} = f + u_0 p$. Veremos que germes no segmento suficientemente próximos a \tilde{f} são \mathcal{R} -equivalentes. A tese — a equivalência entre f e f+p — segue então por um argumento habitual combinando compacidade e conexidade.

A equivalência entre $\tilde{f} + up$ e \tilde{f} corresponde à existência de um germe de difeomorfismo $\varphi(.,u) \in \mathcal{R}$ para o qual $(\tilde{f} + up)(\varphi(x,u)) = \tilde{f}(x)$. Lembre que u é um número pequeno. Levando em conta a exigência $\varphi(x,0) = x$, a existência de φ é equivalente a resolver a equação diferencial

$$\tilde{f}_x(\varphi(x,u))\varphi_u(x,u) + p(\varphi(x,u)) + u p_x(\varphi(x,u))\varphi_u(x,u) = 0.$$

Aqui, pensamos as derivadas em x como sendo vetores gradientes horizontais. Não estamos em condições de garantir existência para essa equação diferencial porque o coeficiente de φ_u não é necessariamente diferente de zero. Temos que empregar a informação algébrica sobre a perturbação p para prosseguir.

Afirmação 1: $J_{\tilde{f}} = J_f$.

Lembre que os geradores de J_f são as colunas da jacobiana $f_x(x)$. Vamos ver que $J_{\tilde{f}} \subseteq J_f$:

$$J_{\tilde{f}} = \langle f_x + u_0 \, p_x \rangle \subseteq \langle f_x \rangle + \langle p_x \rangle = J_f + M_s^k,$$

pois a inclusão $p \in M_s^{k+1}$ implica $p_{x_i} \in M_s^k$. Por hipótese, $M_s^k \subseteq M_s J_f$, logo $J_{\tilde{f}} \subseteq J_f + M_s J_f = J_f$.

Falta ver que $J_f\subseteq J_{\tilde{f}}$. Seja $h\in J_f$, isto é, $h=f_x\gamma$ para um vetor $\gamma\in E_s$.

Então

$$h = (f_x + u_0 p_x)\gamma - u_0 p_x \subseteq J_{\tilde{f}} + \langle p_x \rangle.$$

Logo $J_f \subseteq J_{\tilde{f}} + \langle \frac{\partial p}{\partial x} \rangle \subseteq J_{\tilde{f}} + M_s J_f$, por hipótese. Fazendo $A = J_f$, $B = J_{\tilde{f}}$, $M = M_s$ no Lema de Nakayama como fraseado no Apêndice, concluímos que $J_f \subseteq J_{\tilde{f}}$.

Afirmação 2: $p \in M_s J_f = M_s J_{\tilde{f}}$ e $p_{x_i} \in J_f = J_{\tilde{f}}$, $i = 1, \dots, s$. Tanto p quanto p_{x_i} são germes em M_s^k , como já vimos. Mas, por hipótese, $M_s^k \subseteq M_s J_f \subset J_f$. As igualdades seguem da primeira afirmação.

Voltamos à demonstração do teorema. Pela segunda afirmação, ainda mantendo gradientes como vetores horizontais, $p(y) = \tilde{f}_x(y)\beta(y)$ e $p_x(y) = \tilde{f}_x \alpha(y)$, onde β é um vetor s-dimensional e α é uma matriz $s \times s$, com elementos em M_s e E_s , respectivamente. A equação diferencial se torna

$$\tilde{f}_x(\varphi(x,u))[(I+u\,\alpha(\varphi(x,u)))\,\varphi_u(x,u)+\beta(\varphi(x,u))]=0,$$

onde I é a matriz identidade $s \times s$. Para isso, basta exigir

$$(I + u\alpha(\varphi(x, u))) \varphi_u(x, u) = -\beta(\varphi(x, u))$$

e agora sim, para u e x suficientemente pequenos, estamos nas hipóteses do teorema de existência de soluções de EDO's, já que então $A = (I + u\alpha)$ é invertível (lembre que $\varphi(x,0) = x$). Mais, a solução da equação diferencial, nesse pequeno intervalo aberto contendo u_0 é tal que $\varphi(0,u) = 0$. Isso segue também do teorema de existência (melhor, de unicidade), uma vez que sabemos que $\beta(0) = 0$: por construção, $\beta \in M_s$.

Assim, quaisquer dois germes no intervalo ligando f a f+p que sejam suficientemente próximos são \mathcal{R} -equivalentes. Por compacidade, um número finito de classes de equivalência cobre [0,1] e, por conexidade, existe uma só: $f \in f+p$ são então equivalentes. \blacksquare

Existem alternativas à hipótese de k-determinação. Se $M_s^{k-1} \subseteq J_f$, é claro que vale a hipótese $M_s^k \subseteq M_s J_f$. Se $M_s^k \subseteq M_s J_f + M_s^{k+1}$ novamente temos $M_s^k \subseteq M_s J_f$, agora pelo Lema de Nakayama. Em certos casos, essas hipóteses são mais simples de verificar.

Voltamos à Forma Local das Submersões em E_s : o caso geral será tratado no próximo capítulo.

Forma Local das Submersões em E_s : Seja $f \in M_s$ não-singular (i.e., f não pertence a M_s^2). Então f é 1-determinado.

Demonstração: Como f não é singular, alguma derivada parcial f_{x_i} não é nula na origem. Assim, seu ideal jacobiano J_f tem um elemento invertível: pela Proposição 2.1, J_f é o próprio E_s . A condição suficiente para 1-determinação, $M_s \subseteq M_s J_f$, se torna óbvia.

Portanto f é determinado pelo seu 1-jato $j^1f(x) = f_x(0)x = \langle a, x \rangle$, para o vetor $a = f_x(0)$. Seja $T : \mathbb{R}^s \to \mathbb{R}^s$ uma transformação linear ortogonal levando o vetor canônico e_1 à normalização de a. Pela regra da cadeia, $\tilde{f} = f \circ T$ tem derivada $\tilde{f}_x(0)v = \langle a, Tv \rangle$. Assim, a derivada direcional ao longo de $v = e_1$ é não nula, e qualquer derivada direcional ao longo de vetores ortogonais a e_1 é igual a zero. Em outras palavras, $\tilde{f}_x(0)$ é um múltiplo não nulo de e_1 , e o germe original f é equivalente à projeção $x \mapsto x_1$.

Agora, o Lema de Morse também se torna um problema de álgebra linear.

Lema de Morse: Seja $f \in M_s^2$ e Hf(0) invertível. Então f é \mathcal{R} -equivalente a seu 2-jato.

Demonstração: Pelo Teorema 2.1, a condição suficiente para 2-determinação do germe f é dada por $M_s^2 \subseteq M_s$ J_f . Vamos ver que $J_f = M_s$, o que certamente basta. A inclusão $J_f \subseteq M_s$ decorre de $f \in M_s^2$ pois isto implica que $f_{x_i} \in M_s$, $\forall i = 1, \ldots, s$. Temos que mostrar que $M_s = \langle x_1, \ldots, x_s \rangle \subset J_f = \langle f_{x_1}, \ldots, f_{x_s} \rangle$. Considere o germe dado pelo jacobiano de f, f_x : $(\mathbb{R}^s, 0) \to (\mathbb{R}^s, 0)$. Seu jacobiano na origem é a Hessiana Hf(0) de f, que é invertível por hipótese. Assim, pelo Teorema de Função Inversa, f_x é um difeomorfismo local perto da origem, e existe um outro difeomorfismo local φ — a inversa de f_x — tal que $\varphi \circ f_x(x) = x$. Assim, para cada i, $x_i = \varphi_i(f_{x_1}, \ldots, f_{x_s})$. Como $\varphi_i \in M_s$, basta aplicar o Lema de Hadamard para concluir que $x_i \in J_f$. Assim, $M_s = J_f$ e f é determinado pelo seu 2-jato $(j^2 f)(x) = \frac{1}{2} ((Hf(0)x, x))$

A formulação habitual do Lema de Morse agora segue do teorema espectral: diagonalize $Hf(0)=Q^TDQ$, onde Q é uma matriz ortogonal e D é diagonal, que por sua vez se escreve D=AEA, para matrizes diagonais A e E, onde E só tem entradas iguais a), 1 ou -1, e as posições diagonais de A são estritamente positivas. Então

$$2j^2 f(x) = x^T H f(0) x = x^T Q^T A E A Q x = (AQx)^T E (AQx) = y^T E y,$$

depois da troca de variáveis y = AQx.

Vamos considerar alguns exemplos de k-determinação.

1)
$$f(x,y)=x^3+y^3\Rightarrow J_f=\langle x^2,y^2\rangle\Rightarrow M_2J_f=\langle x^3,yx^2,xy^2,y^3\rangle=M_2^3.$$
 Daí $M_2^3=M_2J_f$ e f é 3-determinado.

- 2) Para $f(x,y)=x^3+y^3$, $J_f=\langle x^2,y^2\rangle$ e, como antes, $M_2^3\subseteq M_2J_f$, logo f é 3-determinado.
- 3) Os últimos exemplos nos induzem a concluir que $f = x^r + y^r$ é r-determinado, mas isso não é verdade. Seja $r \ge 4$. Então $J_f = \langle x^{r-1}, y^{r-1} \rangle$ e

$$M_2^{2r-3} = \langle x^{2r-3}, x^{2r-4}y, x^{2r-5}y^2, \dots, xy^{2r-4}, y^{2r-3} \rangle,$$

$$M_2^{r-2} = \langle x^{r-2}, x^{r-3}y, x^{r-4}y^2, \dots, x^2y^{r-3}, y^{r-2} \rangle.$$

Por uma conta simples, $M_2^{2r-3}=M_2^{r-2}J_f\subset M_2^2J_f$, e f é (2r-4)-determinado. Contudo o monômio $x^{r-2}y^{r-2}$ não pertence a M_2J_f . Então:

 $M_2^{2r-4} \not\subset M_2 J_f$ e f não é (2r-5)-determinado. Por exemplo $f=x^5+y^5$ é 7-determinado mas não 5-determinado. É conveniente representar essas contas em diagramas de Siersma.

- 4) Seja $f \in E_1$. Então, pela Proposição 2.3, a primeira derivada não nula dá a ordem de k-determinação de f: se, por exemplo, f(0) = 0, $f_x(0) = 0$ mas $f_{xx}(0) \neq 0$, então f é 2-determinado.
- 5) Existem germes em E_s que não são finitamente determinados. Um exemplo é $f(x) = \exp(-1/x^2)$, que não é finitamente determinado em 0 porque todos os coeficientes de sua série de Taylor são nulos em 0. Mas existem germes analíticos simples que não são finitamente determinados. Um exemplo é $f(x) = x^2y$. É claro que \mathcal{R} -equivalência não muda o tipo topológico das raízes perto da origem. Entretanto, as raízes desse germe estão nos dois eixos e uma perturbação como $g(x,y) = x^2y + y^{2007}$ tem suas raízes apenas no eixo horizontal.